

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-19/0461 of 2019/07/11

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:

ARVEX CPS

Product family to which the above construction product belongs:

Bonded anchor with anchor rod made of galvanized steel or stainless steel of sizes M8, M10 and M12, for use in masonry

Manufacturer:

ARVEX GROBELNY Sp. z o.o. Ul. Makuszyńskiego 4 PL-30-969 Kraków Tel. +48 12 644 64 57 Internet www.arvex.pl ARVEX GROBELNY Sp. z o.o.

Manufacturing plant:

Manufacturing plant I

This European Technical Assessment contains:

25 pages including 20 annexes which form an integral part of the document

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of:

EAD 330076-00-0604 Metal injection anchors for use in masonry

This version replaces:

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (except the confidential Annexes referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

Technical description of the product

The Injection system ARVEX CPS is a bonded anchor (injection type) consisting of a mortar cartridge with ARVEX CPS injection mortar, a perforated nylon sleeve, and an anchor rod with hexagon nut and washer in the range of M8, M10 and M12.

The steel elements are made of zinc coated steel or stainless steel.

The anchor rod is placed into a drilled hole filled with injection mortar and is anchored via the bond between steel element, injection mortar and masonry.

An illustration of the product and intended use is given in Annex A1 and Annex A3.

The characteristic material values, dimensions and tolerances of the anchors not indicated in Annexes shall correspond to the respective values laid down in the technical documentation¹ of this European Technical Assessment.

The anchors are intended to be used with embedment depth given in Annex A4, Table A1. For the installed anchor see Figure given in Annex A3. The intended use specifications of the product are detailed in the Annex B1.

2 Specification of the intended use in accordance with the applicable EAD

The anchors are intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Basic Works Requirements 1 and 4 of Regulation (EU) 305/2011 shall be fulfilled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences.

The anchor is to be used only for anchorages subject to static or quasi-static loading in solid masonry (Masonry Group b) or hollow or perforated masonry (Masonry

1 The technical documentation of this European Technical Assessment is deposited at ETA-Danmark and, as far as relevant for the tasks of the Notified bodies involved in the attestation of conformity procedure, is handed over to the notified bodies.

Group c) according to Annex B9. The mortar strength class of the masonry has to be M 2,5 according to EN 998-2:2010 at minimum.

The anchors may be installed in Condition w/d: installation in wet substrate and use in structures subjected to dry, internal conditions.

The anchors may be used in the following temperature range:

Ta: -40° C to $+40^{\circ}$ C (max. short term temperature $+40^{\circ}$ C and max. long term temperature $+24^{\circ}$ C), Tb: -40° C to $+80^{\circ}$ C (max short term temperature $+80^{\circ}$ C)

°C and max long term temperature + 50 °C).

Elements made of galvanized steel or stainless steel may be used in structures subject to dry internal conditions only.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the anchor of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Characteristics of product

Mechanical resistance and stability (BWR 1):

The essential characteristics are detailed in the Annex from C1 to C5.

Safety in case of fire (BWR 2):

The essential characteristics are detailed in the Annex from C4.

Safety in use (BWR4):

For basic requirement Safety in use the same criteria are valid for Basic Requirement Mechanical resistance and stability (BWR1).

Sustainable use of natural resources (BWR7)

No performance assessed

Other Basic Works Requirements are not relevant

3.2 Methods of assessment

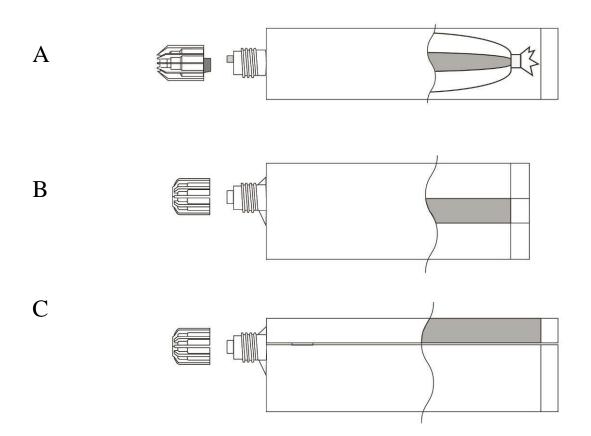
The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 has been made in accordance with the EAD 330076-00-0604 Metal injection anchors for use in masonry, based on the Use Categories b and c in respect of the base material and Category w/d in respect of installation and use.

4 Attestation and verification of constancy of performance (AVCP)

4.1 AVCP system

According to the decision 1997/177/EC of the European Commission, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1.

5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking

Issued in Copenhagen on 2019-07-11 by

Thomas Bruun Manager, ETA-Danmark

Injection Mortar: ARVEX CPS Polyester Resin System

- A) Foil Bag Cartridge 165ml, 300ml
- B) Coaxial Cartridge 380ml, 400ml, 410ml
- C) Side by Side Cartridge 345ml, 825ml

Use category in respect of the base material:

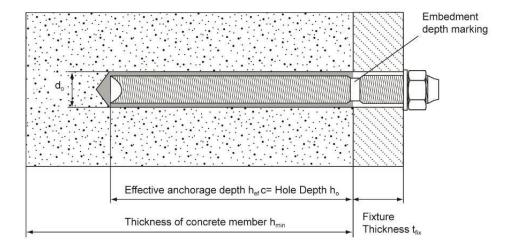
Masonry Group b: metal injection anchors for use in solid masonry.

Masonry Group c: metal injection anchors for use in hollow or perforated masonry.

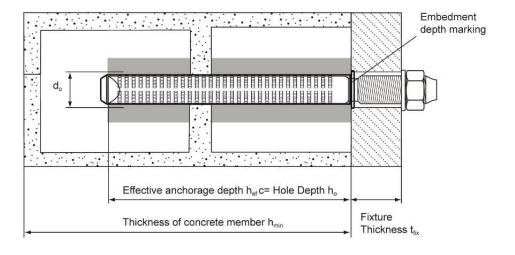
Use category in respect of installation and use:

Condition w/d: installation in wet substrate and use in structures subjected to dry, internal conditions.

Temperature range:


Ta: -40° C to $+40^{\circ}$ C (max. short term temperature $+40^{\circ}$ C and max. long term temperature $+24^{\circ}$ C)

Tb: -40°C to +80°C (max short term temperature + 80 °C and max long term temperature + 50 °C)


ARVEX CPS	Annex A1
Product and intended use (1)	of European Technical Assessment ETA-19/0461

Mixer (Standard / + Hanger)	
Threaded Steel Stud / Washer + Nut Sizes M8, M10, M12	
Perforated Nylon Sleeve Size 16/85	
	Dd
ARVEX CPS	Annex A2
Product and intended use (2)	of European Technical Assessment ETA-19/0461

Anchor application in solid masonry (brick n°1 according to Annex B9)

Anchor application in hollow/perforated masonry with nylon sleeve (brick $n^\circ 2$ according to Annex B9)

ARVEX CPS	Annex A3 of European
Product and intended use (3)	Technical Assessment ETA-19/0461

Table A1: Threaded rod dimensions

Anchor size			M8	M10	M12
Diameter of anchor rod	d	[mm] =	8	10	12
Size of sleeve	$d_{nom} \; x \; 1_s$	[mm] =		16 x 85	
Nominal anchorage depth	$h_{\rm ef}$	[mm] =		85	
Maximum diameter hole in fixture	d_{fix}	$[mm] \leq$	9	12	14
Installation torque moment	Tinst	[Nm] =	2	2	2
Depth of drilled hole to deepest point	h_1	[mm] =		90	

Marking according EAD 330076-00-0604 Metal injection anchors for use in masonry.

Table A2: Threaded rods materials

Designation	Material		
Threaded rods made of zinc coated steel			
	Strength class 4.6, 5.8, 6.8 EN ISO 898-1		
Threaded rod M8 – M12	Steel galvanized ≥ 5µm EN ISO 4042		
	Hot dipped galvanized ≥ 45μm EN ISO 10684		
Washer ISO 7089	Steel galvanized EN ISO 4042; hot dipped galvanized EN ISO 10684		
	Strength class 8 EN ISO 898-2		
Nut EN ISO 4032	Steel galvanized ≥ 5μm EN ISO 4042		
	Hot dipped galvanized ≥ 45μm EN ISO 10684		
Threaded rods made of st	ainless steel		
Threaded rod M8 – M12	Strength class A4-70 and A4-80 EN ISO 3506-1;		
Washer ISO 7089	Strength class A4-70 and A4-80 EN ISO 3506-1;		
Nut EN ISO 4032	Strength class A4-70 and A4-80 EN ISO 3506-1;		

Commercial standard threaded rods with:

- material and mechanical properties according to Table 2;
 confirmation of material and mechanical properties by inspection certificate 3.1 according to EN-10204:2004;

marking of the threaded rod with the embedment depth.

ARVEX CPS	Annex A4
Threaded rod types, dimensions and materials	of European Technical Assessment ETA-19/0461

²⁾ Effective anchorage depths according to the range specified in table 1.

Table A3: Injection mortar

Product	Composition
ARVEX CPS Two components injection mortar	Additive: quartz Bonding agent: polyester resin
1 wo components injection mortar	Hardener: dibenzoyl peroxide

Table A4: Minimum curing time

Temperature in the concrete member	Minimum gelling time in dry conditions (mins)	Minimum load time in dry conditions (mins)
≥ - 5°C	40	180
≥ +5°C	20	90
≥+15°C	9	60
≥ +25°C	5	30
≥ +35°C	3	20

For wet conditions, the loading time must be doubled

ARVEX CPS	Annex A5
Materials and curing time	of European Technical Assessment ETA-19/0461

Plastic sleeve for hollow/perforated masonry: nominal dimensions and material	
Resin sleeves are the effective way to create a fixing where there is a hollow void, such as fo blocks, or a more porous material for example blockwork. Resin is injected to fill the volume forced through the fine perforations once the metal fixing rod is inserted. This distributes the cavity, forming a solid joint between the resin, the sleeve and the fixing.	e of the sleeve, and then
Nylon Perforated Sleeve – 16 x 85	
Nominal Diameter 16 mm	
Nominal Length 85 mm	
ARVEX CPS	Annex A6 of European
Plastic sleeve	Technical Assessment ETA-19/0461

Use:

The anchors are intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 of Regulation 305/2011 (EU) shall be fulfilled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences.

Anchors subject to:

- Static and quasi-static loads: sizes from M8 to M12.

Base materials:

Solid masonry (Masonry Group b) or hollow or perforated masonry (Masonry Group c) according to Annex B9. The mortar strength class of the masonry has to be M 2,5 according to EN 998-2:2010 at minimum.

Temperature range:

The anchors may be used in the following temperature range:

Ta: -40°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C),

Tb: -40°C to +80°C (max short term temperature + 80 °C and max long term temperature + 50 °C).

Use conditions (Environmental conditions):

Threaded rods:

- a) Carbon galvanized steel class 4.6, 5.8 or 6.8 according to EN ISO 898-1 for dry internal conditions.
- b) Stainless steel A4-70 and A4-80 according to EN ISO 3506 for dry internal conditions.

Nuts and washers:

Corresponding to anchor rod material above mentioned for the different environmental exposures.

Installation:

- Condition w/d: installation in wet substrate and use in structures subjected to dry, internal conditions.
- Perforation with drilling machine

Proposed design methods:

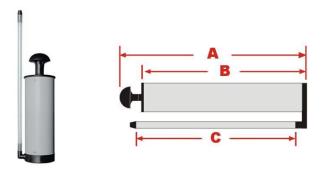
EOTA Technical Report 054, Design method A

ARVEX CPS	Annex B1
Intended use - Specification	of European Technical Assessment ETA-19/0461

Table B1 Installation data for solid masonry (brick n°1)*

Size		M8 M10 M12		
Nominal drilling diameter	d ₀ [mm]	10 12 14		
Maximum diameter hole in the fixture	d _{fix} [mm]	9	12	14
Embedment depth	h _{ef} [mm]	85	85	85
Depth of the drilling hole	h ₁ [mm]	$h_{\rm ef} + 5 \ mm$		
Torque moment	T _{inst} [Nm]	2	2	2
Thickness to be	t _{fix,min} [mm]	>0		
fixed	t _{fix,max} [mm]	< 1500		
Minimum spacing	S _{min} [mm]	255	255	255
Minimum edge distance	C _{min} [mm]	127,5	127,5	127,5

^{*} Type of bricks are detailed in the Annex B9


Table B2: Installation data for hollow/perforated masonry (brick n° 2)*

Size		M8	M10	M12	
Plastic sleeve		16x85			
Nominal drilling diameter	d ₀ [mm]	16	16	16	
Maximum diameter hole in the fixture	d _{fix} [mm]	9	12	14	
Embedment depth	h _{ef} [mm]	85	85	85	
Depth of the drilling hole			h _{ef} + 5 mm		
Torque moment	T _{inst} [Nm]	2	2	2	
Thickness to be	t _{fix,min} [mm]		> 0		
fixed	t _{fix,max} [mm]	< 1500			
Minimum spacing	$S_{min,\parallel}$ [mm]	560	560	560	
	S _{min,} ⊥[mm]	200	200	200	
Minimum edge distance	C _{min} [mm]	100	100	100	

^{*} Type of bricks are detailed in the Annex B9

ARVEX CPS	Annex B2	
Intended use - data	of European Technical Assessment ETA-19/0461	

Manual blower pump: nominal dimensions

190mm (240x190x300mm)

265mm (310x265x330mm)

370mm (420x370x460mm)

-(A): 240mm (overall)

-(A): 310mm (overall)

-(A): 420mm (overall)

-(B): 190mm (Body)

-(B): 265mm (Body)

-(B): 370mm (Body)

-(C): 300mm (Tube)

-(C): 330mm (Tube)

-(C): 460mm (Tube)

Steel Wire Brushes

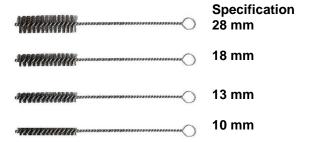


Table B3: Brush diameter

			Use in solid masonry		Use in hollow/perforated masonry			
Type of threaded rod		M8	M10	M12	M8	M10	M12	
\mathbf{d}_0	Nominal drill hole	[mm]	10	12	14	16	16	16
dь	Brush diameter	[mm]	10	13	15	18	18	18

ARVEX CPS	Annex B3
Cleaning tools	of European Technical Assessment ETA-19/0461

	Resin injection pump details			
Image	Size Cartridge / Code	Туре		
	165 / 300ml 300 ml 10:1	Manual		
	345ml 345 ml 10:1	Manual		
	380 / 410ml 380/410 ml 10:1	Manual		
	165 / 300 / 345 / 380 / 410ml 300 ml 7.4v Tool 345 ml 7.4v Tool 380 ml 7.4v Tool	Battery		

ARVEX CPS	Annex B4
Tools for injection	of European Technical Assessment ETA-19/0461

Instructions for use			
Bore hole drilling			
	Drill hole to the required embedment depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit.		
	ng an anchor, the bore hole must be free of dust and debris.		
a) Manual air cleaning (MAC)			
X 4	The manual pump may be used for blowing out bore holes Blow out at least 4 times from the back of the bore hole until return air stream is free of noticeable dust.		
X 4	Brush 4 times with the specified brush size (brush $\emptyset \ge$ bore hole \emptyset , see Table B3) by inserting the steel brush to the back of the hole (if needed with an extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the bore hole. If not, the brush is too small and must be replaced with the proper brush diameter.		
X 4	Blow out again with manual pump at least 4 times until return air stream is free from noticeable dust.		
b) Compressed air cleaning (CAC)			
6 Bar X 2	Blow 2 times from the back of the hole (if needed with a nozzle extension) over the hole length with oil-free compressed air (min. 6 bar at $6m^3/h$) until return air stream is free from noticeable dust.		
X 2	Brush 2 times with the specified brush size (brush $\emptyset \ge$ bore hole \emptyset , see Table B3) by inserting the steel brush to the back of the hole (if needed with an extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the bore hole. If not, the brush is too small and must be replaced with the proper brush diameter.		
	Blow out again with compressed air at least 2 times until return air stream is free from noticeable dust.		

ARVEX CPS	Annex B5	
Procedure for solid masonry (1)	of European Technical Assessment ETA-19/0461	

Instructions for use	Instructions for use		
	Remove the threaded cap from the cartridge. Cut the bag below the clip if appropriate.		
	Tightly attach the mixing nozzle. Do not modify the mixer in any way. Made sure the mixing element is inside the mixer. Use only the supplied mixer with the adhesive.		
	Insert the cartridge into the dispenser. Press the release trigger to retract the plunger and insert the cartridge neatly into the cradle without any distortion.		
×	Discard the initial trigger pulls 10cm of adhesive. Resin will flow from the cartridge as soon as dispensing is initiated.		

Instructions for use			
75%	Insert the nozzle to the bottom of the hole and inject the resin until the hole is filled 75%		
	Insert the anchor, slowly with a slight twisting motion into the hole. Remove excess resin and leave the fixing until minimum curing (loading) times has elapsed		

ARVEX CPS	Annex B6
Procedure for solid masonry (2)	of European Technical Assessment ETA-19/0461

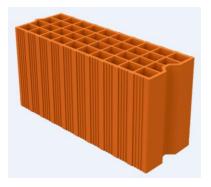
Instructions for use				
Bore hole drilling				
	Drill hole to the required embedment depth with a hammer di mode using an appropriately sized carbide drill bit.	rill set in rotation-hammer		
Bore hole cleaning Just before set	ting an anchor, the bore hole must be free of dust and debris.			
a) Manual air cleaning (MAC)				
X 4	The manual pump may be used for blowing out bore holes Blow out at least 4 times from the back of the bore hole until return air stream is free of noticeable dust.			
X 4	Brush 4 times with the specified brush size (brush $\emptyset \ge$ bore hole \emptyset , see Table B3) by inserting the steel brush to the back of the hole (if needed with an extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the bore hole. If not, the brush is too small and must be replaced with the proper brush diameter.			
X 4	Blow out again with manual pump at least 4 times until return air stream is free from noticeable dust.			
b) Compressed air cleaning (CAC	(2)			
Blow 2 times from the back of the hole (if needed with a nozzle extension) over the hole length with oil-free compressed air (min. 6 bar at 6m³/h) until return air stream is free from noticeable dust.				
X 2	Brush 2 times with the specified brush size (brush $\emptyset \ge$ bore hole \emptyset , see Table B3) by inserting the steel brush to the back of the hole (if needed with an extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the bore hole. If not, the brush is too small and must be replaced with the proper brush diameter.			
6 Bar X 2	Blow out again with compressed air at least 2 times until return air stream is free from noticeable dust.			
	`			
	ARVEX CPS	Annex B7		

ARVEX CPS	Aillex D7
	of European Technical Assessment
Procedure for hollow/perforated masonry (1)	ETA-19/0461

Instructions for use	
	Remove the threaded cap from the cartridge. Cut the bag below the clip if appropriate.
	Tightly attach the mixing nozzle. Do not modify the mixer in any way. Made sure the mixing element is inside the mixer. Use only the supplied mixer with the adhesive.
	Insert the cartridge into the dispenser. Press the release trigger to retract the plunger and insert the cartridge neatly into the cradle without any distortion.
<u>x</u>	Discard the initial trigger pulls 10cm of adhesive. Resin will flow from the cartridge as soon as dispensing is initiated.
<u>x</u>	

Instructions for use	
	Introduce the sleeve of suitable dimension (see table) to the back of the hole so that the collar is level with the hole face. The cap may be opened to allow full nozzle insertion.
100%	Insert the nozzle to the end of the sleeve and inject the resin until the sleeve is 100% filled. Close the cap.
	Insert the anchor, slowly with a slight twisting motion into the sleeve. Remove excess resin and leave the fixing until minimum curing (loading) times has elapsed

ARVEX CPS	Annex B8		
Procedure for hollow/perforated masonry (2)	of European Technical Assessment ETA-19/0461		


Table B5: Type of solid (Brick No 1) and hollow/perforated masonry (Brick No 2)

Solid Brick

Dimensions [mm]: $120 \times 250 \times 60$ f_b class $\ge 40 \text{ N/mm}^2$

density $\rho_m \ge 1666,7 \text{ kg/m}^3$ (e.g. type "Mattone Pieno")

Hollow/Perforated

Dimensions [mm]: $200 \times 560 \times 274$ $f_b \text{ class} \ge 8,5 \text{ N/mm}^2$

density $\rho_m \ge 600 \text{ kg/m}^3$ (e.g. type "French brick")

ARVEX CPS	Annex B9
	of European
1.1.	Technical Assessment

ETA-19/0461

Type and dimensions of brick

Table C1: Essential Characteristics

ESSENTIAL CHARAC	CTERISTICS	PERFORMANCE			
Installation parameters	S	M8	M10	M12	
d [mm]		8	10	12	
d ₀ [mm] category b (soli	d masonry)	10	12	14	
do [mm] category c (holl	ow or perforated masonry)	16	16	16	
Type of plastic sleeve fo	r use in category c	16x85	16x85	16x85	
d _{fix} [mm]		9	12	14	
h ₁ [mm]			$h_{ef} + 5 \text{ mm}$		
t _{fix} [mm]	Min		> 0		
	Max		≤ 1500 mm		
Tinst [Nm] category b (so		2	2	2	
Tinst [Nm] category c (ho	ollow or perforated	2	2	2	
masonry)					
S _{min} [mm] category b (so		255	255	255	
C _{min} [mm] category b (so	olid masonry)	127,5	127,5	127,5	
S _{min} [mm] category c (ho	ollow masonry) $S_{min,\parallel}$	560	560	560	
S _{min} [mm] category c (ho	ollow) S _{min,} ⊥	200	200	200	
C _{min} [mm] category c (he	ollow masonry)	100	100	100	
* Resistance for tensile Temperature range -40	and shear load $0^{\circ}\text{C}/+40^{\circ}\text{C} \text{ (T}_{mlp} = 24^{\circ}\text{C)}$	М8	M10	M12	
Brick n°1 (solid)	N _{Rk} [kN]		2,5		
Dilek ii 1 (solid)	V _{Rk} [kN]		6,0		
Brick n°2 (hollow)	N _{Rk} [kN]		0,75		
V _{Rk} [kN]			3,5		
* Resistance for tensile					
Temperature range -40°C to +80°C (T_{mlp} = 50°C)		M8	M10	M12	
Brick n°1 (solid)	N _{Rk} [kN]		2,0	-	
Brick $n^{\circ}1$ (solid) V_{Rk} [kN]		6,0			
Brick n°2 (hollow) N _{Rk} [kN]			0,6		
DICK II 2 (HOHOW)	V _{Rk} [kN]		3,5		

ARVEX CPS	Annex C1
	of European
Performance for static and quasi-static loads: Resistances	Technical Assessment ETA-19/0461

^{*} For design according to EOTA Technical Report 054: $N_{Rk} = N_{Rk,p} = N_{Rk,pb}$ - steel failure is not decisive * For design according to EOTA Technical Report 054: $V_{Rk} = V_{Rk,b}$ - steel failure without lever arm is not decisive - $V_{Rk,c}$ according to EOTA Technical Report 054

Size			M8	M10	M12
Characteristic resistance with standard threaded rod grade 4.6	$M_{Rk,s}$	[Nm]	15	30	52
Partial safety factor	γ_{Ms}	[-]		1,67	
Characteristic resistance with standard threaded rod grade 5.8	$M_{Rk,s}$	[Nm]	19	37	66
Partial safety factor	γ_{Ms}	[-]		1,25	
Characteristic resistance with standard threaded rod grade 6.8	$M_{Rk,s}$	[Nm]	22	45	79
Partial safety factor	γ_{Ms}	[-]		1,25	
Characteristic resistance with standard threaded rod stainless steel A4-70 (class 70)	$M_{Rk,s}$	[Nm]	26	52	92
Partial safety factor	γ_{Ms}	[-]		1,56	
Characteristic resistance with standard threaded rod stainless steel A4-80 (class 80)	$M_{Rk,s}$	[Nm]	30	60	105
Partial safety factor	γ_{Ms}	[-]		1,33	

ARVEX CPS	Annex C2 of European
Performance for static and quasi-static loads: Resistances	Technical Assessment ETA-19/0461

Table C3: Characteristic values for tension and shear load.

* Resistance for tensile and shear load Temperature range -40°C/+40°C ($T_{mlp} = 24$ °C) and -40°C to +80°C ($T_{mlp} = 50$ °C)		PERFORMANCE				
		M8	M10	M12		
γ _{Mm} [-] Category w/d				2,50	•	
	S _{cr,N} [mm]		255	255	255	
	C _{cr,N} [mm]		127,5	127,5	127,5	
	$S_{cr,N,\parallel}$ [mm]		560	560	560	
Brick n°2	$S_{cr,N} \perp [mm]$		200	200	200	
	C _{cr,N} [mm]		100	100	100	
β coefficient for in situ test (Temperature range: -40°C/-			М8	M10	M12	
Brick Nº 1 - Solid brick		β [-]		0,57		
Brick Nº 2 - French Brick		β[-]		0,60		
β coefficient for in situ test (Temperature range: -40°C/-		53)	M8	M10	M12	
Brick Nº 1 - Solid brick		β [-]		0,45	•	
Brick Nº 2 - French Brick		β[-]		0,47		
Displacement under service Tensile load Temperature range -40°C/+		24°C)	Mo	M10	3//10	
Brick n°1 – Solid brick	и Генъ		M8	M10	M12	
Admissible service load in ter	$\begin{array}{c c} \text{nsile} & F[k] \\ \hline & \delta_{N0}[1] \end{array}$			0,71 0.02		
Displacement			- 7-			
	δ _{N∞} [mmj	M8	0,05 M10	M12	
Brick n°2 – Hollow/perforat	-		With sleeve	With sleeve	With sleeve	
Admissible service load in ter	nsile F [kl	N]	0,21			
D:1	δ _{N0} [1	mm]	0,03			
Displacement	$\delta_{N\infty}[$	mm]	0,05			
Displacement under service Tensile load Temperature range -40°C to		$b = 50^{\circ}C$				
Brick n°1 – Solid brick		M8	M10	M12		
Admissible service load in ter	nsile F [kl	N]		0.57		
		mm]	0,03			
Displacement	δ _{N∞} [0,06			
Brick n°2 – Hollow/perforated brick		M8 With sleeve	M10 With sleeve	M12 With sleeve		
Admissible service load in ter	nsile F [k]	N]		0.17		
	δ _{N0} [1			0.03		
Displacement		mm]	0,07			

ARVEX CPS	Annex C3 of European
Performance for static and quasi-static loads: Resistances	Technical Assessment ETA-19/0461

Table C3 cont.: Characteristic values for tension and shear load.

ESSENTIAL CHARACTERISTICS		PERFORMANCE		
Displacement under service load				
Shear load				
Temperature range -40°C/+40°C	$(T_{mlp} = 24^{\circ}C)$ a	nd -40°C to +80°C ($T_{mlp} = 5$	0°C)	
Brick n°1 – Solid brick		M8	M10	M12
Admissible service load in shear	F [kN]	1,71		
Displacement	δ_{V0} [mm]	0,45		
	$\delta_{V\infty} [mm]$	0,68		
Brick n°2 – Hollow/perforated brick		M8	M10	M12
		With sleeve	With sleeve	With sleeve
Admissible service load in shear	F [kN]	1,00		
Displacement	δ_{V0} [mm]	1,15		
	$\delta_{V\infty}$ [mm]	1,73		

Table C4: Reaction to fire.

ESSENTIAL CHARACTERISTICS	PERFORMANCE
Reaction to fire	In the final application the thickness of the mortar layer is about 1 to 2 mm and most of the mortar is material classified class A1 according to EC Decision 96/603/EC. Therefore, it may be assumed that the bonding material (synthetic mortar or a mixture of synthetic mortar and cementitious mortar) in connection with the metal anchor in the end use application do not make any contribution to fire growth or to the fully developed fire and they have no influence to the smoke hazard.

Table C5: Resistance to fire.

ESSENTIAL CHARACTERISTICS	PERFORMANCE
Resistance to fire	No performance assessed

ARVEX CPS	Annex C4 of European Technical Assessment ETA-19/0461
Performance for static and quasi-static loads: Resistances	

Table C6: Terminology and symbols TERMINOLOGY AND SYMBOLS Diameter of anchor bolt or thread diameter d_0 Drill hole diameter Diameter of clearance hole in the fixture d_{fix} hef Effective anchorage depth h₁ Depth of the drilling hole Tinst Torque moment to installation Thickness to be fixed t_{fix} S_{min} Minimum allowable spacing C_{min} Minimum allowable edge distance Characteristic tensile resistance for single anchor N_{Rk} V_{Rk} Characteristic shear resistance for single anchor Partial safety factors γ_{Mm} Spacing for ensuring the transmission of the characteristic tensile resistance of a single anchor without spacing and edge

Edge distance for ensuring the transmission of the characteristic tensile resistance of a single anchor without spacing and edge

Annex C5

of European Technical Assessment

ETA-19/0461

 $C_{\text{cr},\text{N}}$

F

 δ_{0}

NPD

effects

Service load

Factor according to EOTA TR 053

No performance declared

Short term displacement under service load Long term displacement under service load

ARVEX CPS

Terminology and symbols